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Abstract 

An approach is developed for the alignment and stability maintenance of the LUVOIR segmented 
primary mirror using a segment state estimation and wavefront control method based on a hybrid 
segment motion sensing architecture of laser truss metrology and segment edge sensors. Our current 
computer model was generated for LUVOIR Architecture Option A with a 15-meter aperture, 120-
segment primary mirror. The methodology and simulation results will be presented and analyzed. 

JPL has a long history of technology development in laser metrology and edge sensors, including 
work in SIM [7], Keck and TMT [8], CCAT [3] and LUVOIR [1]. We will discuss our current efforts 
of LUVOIR laser metrology and edge-sensor models development, showing sensitivities of sensor 
measurements to various mirror eigenmodes, removing global modes and strengthening weak modes by 
performing joint (hybrid) laser-metrology and edge sensing. We will define and derive an important 
performance metric called wavefront error multiplier (WEM), and show that WEM provides a simple link 
between sensor errors and the closed-loop (controlled) system wavefront error. We will show WEM 
values for several hybrid sensor configuration options studied.  

We will discuss an algorithm for mirror shape control and maintenance through segment state and 
wavefront estimations using joint edge-metrology sensing. We will compare simulated performance of 
mirror state estimation, wavefront estimation and wavefront control based on joint edge-metrology 
sensing among several sensor configurations, and show the impact of sensor error distributions on the 
segmented mirror alignment performance. Mirror shape control performance will be also be evaluated in 
terms of imaging contrast between inner working angles (IWA) and outer working angles (OWA) of a 
LUVOIR coronagraph. 

 

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under 
a contract with the National Aeronautics and Space Administration. LUVOIR is a mission concept under 
study for the next astronomy Decadal Survey—the information presented in this paper is pre-decisional 
and is provided for planning and discussion purposes only. 

Copyright 2018 California Institute of Technology. U.S. Government sponsorship is acknowledged.  

 

 

1. Introduction 
LUVOIR’s exoplanet observations would be accomplished by high optical resolution offered by a large 

segmented aperture, and high contrast direct imaging using a coronagraph to block the light from a star in 
order to detect and characterize the much fainter light reflected from planets orbiting the star. The optical 
layout of a canonical coronagraph [1] is sketched in Fig 1. The wavefront requirement for exoplanet 
observations falls in the range of pico-meters in order to realize the planet-star contrast of the order of 
10-10, which is needed to have an IWA of a few /D, where  and D are coronagraph central wavelength 
and the telescope main aperture, respectively. This performance requirement calls for ultra-stability of 
the primary mirror and highly robust and accurate wavefront sensing and control mechanisms.  

Since no single approach would be sufficient to achieve the wavefront and contrast performance 
required for exoplanet observations, the LUVOIR technology development is currently exploring a set of 
existing and new promising technologies and seeks to use a combination of them for implementing a 
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successful LUVOIR mission. Exit pupil wavefront sensing, drawing on the heritage of James Webb Space 
Telescope (JWST) [6] and work from other NASA/DoD missions, provides a very accurate means of 
measuring the total effect of optical system aberrations on the imaging quality. Iterative wavefront 
sensing algorithms such as MGS [6] or image-based parametric algorithms can work effectively with 
segmented aperture systems as a fine-phasing step to generate accurate system wavefront estimates. 

Interferometric wavefront sensors such as low-order (Zernike) wavefront sensors (LOWFS) have 
been known in theory and demonstrated in testbeds such as those for proposed WFIRST observatory [4] 
to be able to provide an accurate means of continuously sensing and control low-order wavefront modes 
such as telescope pointing errors and wavefront errors (WFE) due to changes of thermal environment for 
a system with a monolithic aperture. ZWFS can effectively sense low-order spatial modes in the wavefront 
since it uses a reference beam reflected from the coronagraph occulting core. More recent work on Out-
of-Band WF sensor (OBWFS) [5], still based on the ZWFS interferometric architecture, performs WF 
sensing using UV light of the entire star light beam, so that all of the WF spatial frequencies can be 
measured and controlled.  

 

 
Figure 1: A canonical LUVOIR coronagraph system design 

 

Another powerful tool to meet the LUVOIR ultra-stability requirement would be high bandwidth 
metrology of the telescope optical alignments. Coupled with precision rigid-body actuator (RBA) control, 
optical metrology enables rapidly stabilizing and maintaining the position and orientation of each optic 
or telescope assembly relative to each other or to some reference point. A significant advantage of using 
metrology for LUVOIR optical alignment is that it does not require a guide star to sense and control the 
largest sources of instability, such as dephasing of the PM segments and position and orientation errors 
of the secondary mirror. Metrology is therefore complementary to wavefront sensors such as MGS, 
LOWFS and OBWFS, providing much higher bandwidth maintenance of telescope configuration during 
maneuvers, and ensuring telescope performance during astrophysical sciences observations when the 
coronagraph is not operating.   

This paper focuses on two metrology methods especially well-suited for LUVOIR. The first is Laser 
Truss Metrology (LMET), which uses a set of laser distance gauges, such as beam launchers (BL) and 
corner cubes (CC) to form a round-trip laser path, to measure the changes of rigid body state of the 
primary mirror segments relative to the secondary mirror, and the change of secondary mirror state 
relative to the instrument optics behind the primary mirror as depicted in Fig 2. LMET can measure the 
alignment of all of the major optical elements relative to a common reference, such as the attitude control 
system platform. The sensitivity strength of a LMET system depends on the beam configuration of BL 
and CC. A pose error multiplier vector can be computed for a given LMET configuration, which shows 
the estimated segment pose errors for a unit of metrology sensor error. When system wavefront is the 
driving performance metric, a convenient metric for the LMET sensitivity strength is a scalar value called 
Wavefront Error Multiplier (WEM), which is obtained by projecting the pose error multiplier into the 
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wavefront space. A design goal of a LUVOIR LMET system is to minimize the WEM subject to other 
engineering constraints.  

 
Figure 2: Laser metrology beams between primary segments to secondary, and secondary to instrument 

bench behind primary 
 

The second metrology method is Segment Edge Sensors (SES), using high precision three-
dimensional measurements of the change of relative positions of a pair of adjacent segment edges, made 
typically at two locations along each edge. Capacitive sensors have been used for segmented ground 
telescopes. The Keck Observatory on Mauna Kea implemented interleaved sensing elements with 1 nm 
measurement noise. Capacitive gap measurement devices have demonstrated 15 pm precision for 
applications on the Laser Interferometer Space Antenna (LISA) mission with very small gap between 
segments. Edge sensors planned for the upcoming Thirty Meter Telescope use face-on sensing plates, 
plus gap measurements, non-interleaved approach better suited for deployed-aperture space telescopes 
(Shelton 2008) [8] . Other edge sensor designs, using inductive or optical measurements have been 
studied (Burt 2012) [9].  

 

 
Figure 3: LUVOIR primary laser truss metrology model developed in our study 

 

A SES system generates different sensitivity strength corresponding to different mirror eigen-mode. 
And, similarly, a WEM can be computed for a given SES system. A more detailed SES description and 
analysis are presented in Section 3. Since SES measurements are between a pair of segment edges, it is 
obvious that SES does not generate any response to rigid body motions of the entire mirror; in addition, 
SES generates very weak responses to low-order mirror eigenmodes (such as focus mode). A combination 
of LMET and SES provides the potential of a metrology system with better performance than using either 
one of them, simpler structure and reasonable cost. Hybrid metrology system options are discussed in 
Section 4.  

A closed loop control system feeds back the LMET and SES measurements to segment Rigid Body 
Actuators (RBAs) to keep the segments aligned to each other. One approach is to perform wavefront 
control through a segment state estimator based on metrology measurements. Since wavefront is directly 
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related to system imaging performance, it makes sense to drive the controller to minimize the estimated 
wavefront error. Segment state estimation, state and wavefront estimates and wavefront control are 
discussed in Section 5.  

 

2. LUVOIR Primary Truss Metrology Model and Sensitivity 
LMET draws its heritage from NASA’s Space Interferometry Mission (SIM) project, which 

demonstrated pico-meter precision on large ground-based testbeds with large and heavy beam launchers 
and corner cubes [7]. Subsequent development at JPL achieved much smaller and more compact LMET 
devices, for attachment to lightweight mirror segments, targeting performance at the sub-nanometer level. 
LISA Pathfinder has further refined laser metrology technology with laser gauges and electronics that 
achieve picometer accuracy. LUVOIR metrology development aims to combine SIM and LISA LMET 
approaches to provide picometer-precision measurements, with a compact and unobtrusive LMET 
package, that LUVOIR would need to preserve coronagraph high contrast performance during extended 
science observations. 

To model and analyze LMET performance on LUVOIR architecture A, an optical system model with 
a 15-meter primary mirror (PM) of 120 segments is generated using a JPL-developed optical modeling 
tool called MACOS (Modeling and Analysis of Controlled Optical Systems). The optical system model is 
then used to generate linear model sensitivities for system wavefront and laser metrology measurements. 
A rigid-body PM segment pose state consists of six degrees of freedom (6DOF), with three rotations and 
three translations defined in each segment’s local coordinate frame. Wavefront sensitivities are generated 
with respect to the change of segment rigid-body state, which is used to generate estimated linear 
wavefront given a PM segment state estimate. A linear wavefront due to segment state change can be 
expressed using wavefront sensitivities  

W = W0 + dwdx ∗dx       (1) 

where W0 is the design wavefront residual, dwdx is the wavefront sensitivity matrix, and dx is the 
change of segment state vector. With LMET, the PM segment state is related to the laser metrology 
measurements by  

dx = pinv(dldx) ∗ dl       (2) 

where dl is the changes of round-trip metrology leg length between BL and CC due to changes of segment 
poses dx, dldx is the sensitivity matrix linking segment poses to metrology leg lengths, and pinv() is the 
pseudo-inverse operator. The dldx matrix is generated with MACOS by perturbing each DOF of a 
segment in its local coordinate frame and calculating the change of metrology leg length. Given a set of 
laser metrology measurements dl, the estimated wavefront, using a simple least-square approach, can then 
be obtained by combining (1) and (2) 

dW = dwdx ∗pinv(dldx) ∗dl      (3) 

where dW = W – W0 is the wavefront change due to segment pose change. The accuracy of the wavefront 
estimate dW depends on the accuracy of the metrology measurements dl as shown in (3). Suppose 
metrology has measurement errors η, the noise metrology measurement vector is then 

dl^ = dl + η 

The error of estimated wavefront due to metrology error is given by 

dW^ = dwdx ∗pinv(dldx) ∗η          (4) 

Equation (4) indicates that dW^ is directly affected by the conditioning of matrix dldx due to the need to 
invert it. A BL/CC beam mapping configuration with weak independence among metrology beams results 
in poor conditioning of dldx, which can be seen more clearly by looking at the singular value 
decomposition (SVD) of dldx 

SVD of dldx = 𝑈𝑆𝑉 = ∑ 𝑢 𝑠 𝑣        (5) 
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pinv(dldx) = ∑ 𝑣 𝑢 /𝑠        (6) 
 

where 𝑢  and 𝑣  are singular vectors and 𝑠  are singular values. When no metrology beams are completely 
correlated to each other, the matrix dldx has full column rank and all singular values 𝑠  are non-zero, but 
some weak correlation of metrology beams will result in very small singular values, which strongly 
magnify the wavefront estimation error since 𝑠  in the denominators in equation (6). To have a suitable 
metric for quantifying the impact of sensor noise error on the wavefront estimate error, a scalar value 
called Wavefront Error Multiplier (WEM) is defined as 

WEM = mean(RMS(dW^))/mean(|η|)       (7) 

For a given LMET configuration, WEM can be easily computed according to equation (7) with a Monte 
Carlo simulation. The WEM value provides a multiplying factor of how much metrology measurement 
errors will be magnified, on average, to show up in the estimated system wavefront error. Our LUVOIR 
laser metrology primary truss model places six BL around the edges of each hexagon shaped segment; 
the six metrology beams are mapped to three of the six CC near the perimeter of the secondary mirror 
(SM).  Fig. 3 shows metrology beams from six segments, one on each ring, to the CC near SM. With CC 
locations fixed, when BL locations move around the segment edges, the WEM value can be seen to vary 
continuously. For the LUVOIR primary metrology truss configuration, our model achieved a WEM value 
close to 6.5 when BL are placed near the center of each segment edge. 

WEM can also provide a good estimate of closed-loop wavefront when taking into account of 
metrology sensing errors. If WFE1 is the closed-loop wavefront residual assuming ideal metrology 
sensors with zero sensing error, and WFE2 is the closed-loop wavefront residual with metrology sensing 
error η, then it can be shown, on average, 

WFE2 – WFE1 = WEM ∗ η         (8) 

so WEM provides a convenient means of accessing controlled system performance in the presence of 
sensing errors. 

 

3. LUVOIR Primary Segment Edge Sensor Model and Eigen-Modes 
We developed a generic edge sensor model for the LUVOIR primary mirror with 120 segments. The 

sensor measurement model is generic in the sense that it does not involve specific sensor implementation 
details.  The sensor model does calculations to measure changes of relative piston, gap and shear along 
an edge between segments. Two edge sensing spots are located at each edge between two neighboring 
segments.  

 

 

 

 

 

 

 

Figure 4: Edge sensor 3D measurement model 

 

Each sensing spot consists of a driver on one segment and a sensor on the other segment. To compute edge 
sensor measurements, which does not imply an actual physical sensor implementation, a “beam” is 
launched from the driver spot on one segment and intersects with the sensor plane fixed on the other 
segment. The change of footprints of the driver beam on the sensor plane provides the changes of shear 
and relative piston when projected onto x and y axes of a sensor local coordinate frame, and the projection 

dx 
dy L2 
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onto z axis of the vector from a driver spot the origin of the sensor local coordinate frame provides the 
gap value. Fig. 4 Illustrates the edge sensing measurement model on a sensing spot between two segments. 
The segment on the sensor side does not move in this case while the driver segment is perturbed from its 
nominal position. dx is shear value which is the difference of beam projections to x axis, and, similarly, dy 
is the relative piston. Gap change is L = L2 – L1.  

 

 
Figure 5: A set of 624 edge sensors along edges of 120 segments of LUVOIR primary mirror 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: 24 weakest eigen-modes of 6DOF segment 3D edge sensors 
 

The entire set of edge sensors on all 120 PM segments is shown in Fig. 5, where there are 312 edges with 
sensor measurements. On each edge of a segment with sensing spots, a driver is at one spot and a sensor 
is at the other spot, which correspond to a sensor and driver on the neighboring segment. Each sensing 
spot generates two 3D meaurements of six values, with the total measurement values equal 1872. Denote 
H = dedx the edge sensor rigid-body sensitivity matrix, with its column dimension = number of  segments 
∗ 6DOF = 120 ∗ 6 = 720, and its row dimension =  total sensor measurements = number of sensed edges 
∗ 6 = 312 ∗ 6 = 1872. Since edge sensors generate no response when the PM undergoes any rigid-body 
motion, which can be represented as a combination of three rotations and three translations with respect 
to a certain coordinate frame, H is a matrix with a null space of dimension six. To perform segment control 
with edge sensing, additional constraints or sensing mechanism is needed to generate segment state 
estimate. 

The precision of wavefront control based on edge sensing, similarly to the control using metrology 
sensing, is determined by the wavefront error multiplier of the edge sensor system. It is useful to look at 
the WEM of edge sensors with respect to mirror eigenmodes. Edge sensors respond to each mirror 
eigenmode with a specific measurement strength and results in a corresponding WEM value. This can be 
illustrated treating edge sensors as a linear system, starting with a singular value decomposition of the 
sensitivity matrix H 
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𝐻 = 𝑑𝑒𝑑𝑥 =  𝑈𝑆𝑉 =  ∑ 𝑢 𝑠 𝑣         (9) 

where  𝑢  and 𝑣  are singular vectors and 𝑠  are corresponding singular values. Denote 𝑑𝑒  the sensor 
measurement of i-th eigen-mode, we have 

𝑑𝑒 = 𝑑𝑒𝑑𝑥 ∗ 𝑣 =  𝑠 𝑢        (10) 

Define sensor measurement strength of i-th eigen-mode as the vector norm of 𝑑𝑒  

|𝑑𝑒 | =  𝑠  

so the singular value 𝑠  is the edge sensor measurement strength of i-th eigen-mode. The wavefront map 
of the i-th eigen-mode can be generated by projecting 𝑣  into the wavefront space  

𝑑𝑤  = 𝑑𝑤𝑑𝑥 ∗ 𝑣        (11) 

Fig. 6 shows wavefront maps of the 24 weakest eigen-modes along with the singular values (sv), and Fig. 
7 shows the wavefront and singular value of the 24 strongest modes. The first six modes in Fig. 6 are 
indicated to be global modes corresponding to the mirror rigid-body motions with six DOFs, which should 
have zero singular value. The tiny singular values shown in Fig? for the global modes are round-off 
residuals of numerical computation, which would otherwise be zero in exact mathematics. The singular 
modes constitute a null space of the sensitivity matrix dedx that need to be removed with additional 
constraints or sensing for the purpose of segment state estimate and control.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7: 24 strongest eigen-modes of 6DOF segment 3D edge sensors 

 

Mode ordering could be some slightly different depending on sensor geometry, such as the distance 
between the driver and sensor. Beyond singular global modes, the edge sensors show some modes that 
generate very weak measurements. The weak modes, with small singular values, look similar to low-
order Zernike type aberrations such as focus and astigmatism, and they contribute most significantly to 
the segment state estimation error in the presence of sensing errors. Let 𝑑�̂�  be the noisy edge sensor 
measurement of i-th eigen-mode with sensing error 𝜀, 

𝑑�̂� = 𝑑𝑒 +  𝜀 

the estimated segment state 𝑑𝑥 , with a simple least-square estimator, is  

𝑑𝑥 =  (𝑑𝑒𝑑𝑥) 𝑑�̂� = 𝑣 𝑢 𝑠⁄ (𝑑𝑒  + 𝜀) = 𝑣 + (𝑣 𝑢 𝑠⁄ )𝜀      (12) 

using 𝑑𝑒  derived in equation(?). The second term in equation (12) is the segment pose estimation error 
of i-th eigen-mode due to sensing inaccuracy. The segment pose error multiplier of i-th eigen-mode, 
𝑃𝐸𝑀  is a vector of the size of total DOF of segments 

𝑃𝐸𝑀 = , 𝜀 /|𝜀|, , 𝜀 /|𝜀|, …  
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Let 𝑑𝑤  be the estimated wavefront from 𝑑𝑥 , 

𝑑𝑤 = 𝑑𝑤𝑑𝑥 ∗ 𝑑𝑥 = 𝑑𝑤𝑑𝑥 ∗ 𝑣 + 𝑑𝑤𝑑𝑥 𝑣 𝑢 /𝑠 𝜀 
 

the wavefront error multiplier of i-th eigen-mode 𝑊𝐸𝑀 , with sensor noise 𝜀, is a scalar value given by 

𝑊𝐸𝑀 =  𝑚𝑒𝑎𝑛(𝑅𝑀𝑆 𝑑𝑤𝑑𝑥 𝑣 𝑢 𝑠⁄ 𝜀 )/𝑚𝑒𝑎𝑛(|𝜀|)  

The total WEM of the edge sensors takes contributions from 𝑊𝐸𝑀  of all mirror eigenmodes, with the 
most significant contributions coming from the weakest modes. Fig?? shows two 𝑊𝐸𝑀  values for a weak 
focus mode and the strongest mode in Fig. 8. With the six global singular modes excluded, the total WEM 
of the edge sensors is 7.82, which implies, on average, a 7.82 pm wavefront error for 1 pm of edge sensing 
error.  

 

 

 
                                      

 

Figure 8: focus mode (left) with 𝑊𝐸𝑀 = 2.26, strongest mode (right) with 𝑊𝐸𝑀 = 0.01879 
 

Capacitive edge sensors is an example of a physical implementation of the 3D segment edge motion 
sensing and measurement system we generically modeled in our LUVOIR edge sensor framework. A 
TMT-implemented parallel plate capacitor edge sensor is depicted in Fig. 9, where there is an upper 
capacitor formed by driver plate 1 and a sensor plate, and a lower capacitor formed by drive plate 2 and 
the sensor plate. The driver plates are installed under one segment, and the sensor plate under a 
neighboring segment, along a sharing edge. The relative tilt and translation motions of the segments 
change the effective areas and plate separations of the upper and lower capacitors, resulting in two sensor 
charge signals R1 and R2. Segment tilt, related to the dihedral angle 𝜃 as shown in Fig ??, and segment 
relative piston 𝑧 can be computed from sensor readings. The relationship between 𝜃 and 𝑧 and sensor 
readings can be derived, neglecting second-order terms [8], to reach the following equation 

𝑅 =  𝑘(𝐵 − 𝑓) + 𝑧 +  𝜃           (13) 

where, R = R1+ R2, and A is a function of electric and geometry constants. 

 

 

 

 

 

 

 

 

Figure 9:  TMT capacitive sensor geometry and sensitivity model 
 

In TMT implementation, the gap value 𝑦 is independently measured, so with two sensors on each edge, 
the two sensor readings can be used through equation (13) to derive 𝜃 and 𝑧. To reduce sensor cost, TMT 
derives segment relative shear through the knowledge of gap 𝑦 with the limitation of ignoring the effect 
of segment clocking. 
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4. Hybrid Mirror Segment Sensing with Truss Metrology and Edge Sensors 
A more effective approach for primary mirror segment sensing is to combine the truss metrology and 

segment edge sensing. For instance, edge sensors are placed along all shared segment edges as shown in 
Fig?, and laser metrology sensors are placed on a few selected segments. First, this hybrid sensing 
arrangement removes the global modes encountered when using edge sensors only, and it also generates 
better (smaller) WEM values as an overall sensing system. Fig. 10 shows a set of hybrid sensing 
arrangements we studied. The segments with a tilt are the ones with six metrology beams around them. 
The rigid-body motions of these segments can be completely sensed and controlled by the truss metrology 
beams, so they act as “anchors” or references for other segments to be aligned around them through edge 
sensing and control. With hybrid metrology sensing, the joint sensitivity matrix can be formed by 
stacking the edge sensor sensitivity matrix dedx and laser metrology sensitivity matrix dldx for the 
selected segments in corresponding DOF columns. Symbolically, we write the hybrid sensitivity matrix 
dmdx as  

𝑑𝑚𝑑𝑥 = 𝑑𝑒𝑑𝑥 + 𝑑𝑙𝑑𝑥(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠) 

 

 

 

 

 

 

 

 

 
Figure 10: Hybrid sensing options and their WEM values. Segment with tilt have metrology sensing 

 

 

 

 

 

 

 

 
 

Figure 11: 24 weakest modes of the hybrid sensing configuration 

 

WEM values can then be computed for the joint sensitivity matrices for each hybrid sensing option. Fig. 
10 shows the WEM values for those configurations. With 12 or more segments having truss metrology 
constraints, the WEM values are around 3, which is noticeably better than using edge sensing alone. Fig. 
11 shows the 24 weakest eigenmodes of the hybrid configuration with 12 segments having truss 
metrology beams. 
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5. LUVOIR Primary Mirror Stabilization with Hybrid Sensing and Control 
We performed simulation and analysis of LUVOIR primary mirror segment stabilization with hybrid 

segment sensing and control. The state estimation and wavefront control approach is similar to what was 

discussed in Redding 1991 paper [2] and implemented in CCAT [3]. Again let  be the hybrid 
sensitivity matrix, n be edge and metrology sensing error vector, and x be the segment rigid-body state 
vector, the measurements m can then be written as 

𝑚 = ∗ 𝑥 + 𝑛  

Suppose some a priori knowledge of the statistics of segment initial alignment errors is available, and 
some a priori knowledge of edge sensing and metrology sensing errors can be estimated, then both can 
be incorporated into the segment state estimation process. Thus let 𝑋  be the covariance matrix of 
segment initial alignment errors, and R be the covariance matrix of sensor measurement errors, a segment 
state estimator can be derived by minimizing the following objective function J  in terms of x. 

𝐽 =  [𝑥 𝑋 𝑥 + 𝑚 − 𝑥 𝑅 𝑚 − 𝑥 ]        (14) 

Setting 𝑑𝐽 𝑑𝑥⁄  to zero, we get a least-square estimate of the segment state 𝑥 . Absent from sensor 
measurement errors n, we have 

𝑥 = 𝐾 ∗ 𝑚 = 𝐾 ∗ 𝑥  

where  

𝐾 = 𝑃 𝑅 ,     𝑃 =  𝑋 + 𝑅   

With sensor measurement errors included, the segment state estimate is  

𝑥 = 𝐾 ∗ 𝑥 + 𝐾 ∗ 𝑛  

The two terms in equation (?) for the cost function J balances each other in the least-square procedure 
depending on the ratio of 𝑋  and R. The first term, essentially a penalty on the state x, adds a soft 
constraint on the segment motions in the estimated state. If, say, we had the knowledge that segment 
errors are small, implying the covariance errors 𝑋  would be small and hence its inverse would large, the 
first term of J then puts a large penalty on it, which is equivalent to a constraint on segment motions 
estimate, and would generally influence the search for a state estimation by the least-square optimizer. 
On the other hand, if our knowledge of segment motions is rather poor, thus assuming a very large 
covariance𝑋 , which effectively drops the first term from J, and therefore there will be little constraint on 
x when searching for a state estimate. If the sensing errors are known to be large, a small 𝑅  (relative to 

𝑋 ) implies that 𝑚 − 𝑥  doesn’t need be too small for the state estimate x, which tends to reduce 

noise magnification effect on wavefront error by the weak modes of . With the state estimate 𝑥 , the 
estimated wavefront can be computed using the linear wavefront model 

𝑤 = 𝑤 + 𝑥        (15) 

where  is the linear sensitivity matrix of LUVOIR wavefront with respect to segment state x, 𝑤  is 

the known target or desired wavefront when segment state errors is zero. The estimated wavefront 𝑤  
can then be minimized or driven to the target wavefront 𝑤  in a wavefront control process. The true 
linear wavefront 𝑤 can be written as 

𝑤 = 𝑤 + 𝑥  

where 𝑥 is the true segment state. The estimated controlled wavefront can be written as  
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𝑤 , = 𝑤 + 𝑥 + 𝑢         (16) 

where u is the vector of controllable part of state x.  The expression in (**) shows the control acts upon 
the estimated wavefront 𝑤  instead of the true wavefront which is unknown. Setting 𝑤 , = 𝑤 , we  
get the state control vector  

𝑢 =  −
𝑑𝑤

𝑑𝑢

𝑑𝑤

𝑑𝑥
𝑥  

where ( ) is the pseudo-inverse operator used to provide a least-square solution. After the state control 
is applied to the actual system, the true controlled wavefront is 

𝑤 = 𝑤 + 𝑥 − 𝑥         (17) 

If all elements in the system are controllable, that is =  , we have 

𝑤 =  𝑤 + (𝑥 − 𝑥  )  

In this case, the control would restore the system to its target wavefront 𝑤  if the state estimate is perfect 
(𝑥 = 𝑥 ). In reality, the state estimate will be imperfect due to sensing errors, and generally the control 
vector 𝑢 is in a subspace of system state space 𝑥 (with non-controllable optical elements) and the presence 
of other non-controllable errors (such as element surface errors), all contributing to the post-control 
(closed-loop) wavefront errors.    

We now discuss several simulation exercises of LUVOIR primary mirror segments alignment by 
means of segment state estimation and wavefront control using the sensing and control framework 
outlined above. In the first step of the simulation, random rigid-body (pose) errors are applied to each of 
120 primary mirror segments to generate an initial segment state vector 𝑥 of dimension 720 (=120 × 6), 
with segment having three rotation and three translation errors with respect to its local coordinate frame.  
A hybrid truss metrology and edge sensing strategy is used to generate an estimated segment state 𝑥 . 
Truss metrology measurements, using the secondary mirror rim as reference, are implemented on 12 
selected segments, with six metrology beams on each segment. Edge sensors are implemented on all 120 
segments, with two edge sensing spots along each edge of two neighboring segments. The hybrid sensing 
configuration is as shown in the second image of first row in Fig. 10, with a WEM of 3.68. We start with 
an ideal sensing case with zero sensing errors, applying random segment rotation errors of 0.5 micro-
radian standard deviation and random segment translation errors of 0.5 micron standard deviation, all 
uniform distributed. The nominal (un-perturbed) wavefront and the wavefront with segment rigid-body 
errors are shown in Fig ?? below 

 

 

 

 

 
Figure 12: Design (target) wavefront and wavefront with pose errors 

 

The nominal wavefront with 18.79 nm RMS, is the design residual wavefront of LUNVOR 120-element 
architecture A telescope, which includes a primary, a secondary, a tertiary and a fast-steering mirror.  The 
wavefront image on the right in Fig. 12 is the result of a single realization of random segment pose errors, 
with about 1.1 micron RMS. Following the control scheme discussed earlier, a wavefront estimate 𝑤  
is generated using 𝑥  and linear wavefront model (16), a 6DOF segment control is then performed to 
drive the (estimated) wavefront towards to the target wavefront (the first image in Fig. 12). The post-
control wavefront is shown in Fig. 13.  
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Figure 13: Closed-loop wavefront, zero sensing error 

With zero metrology and edge sensing errors, the segment state estimate 𝑥  should be very close to the 
true state 𝑥 , with the difference contributed only from computational precision errors of the state 
estimator. Since the control is applied to 6DOF of all segments and there is no other error sources 
elsewhere in the system, the post-control wavefront should be very close to the target wavefront, as shown 
the controlled wavefront and the difference between the controlled and the target wavefront in Fig. 13. 
Next we add sensing errors to the metrology and edge sensing. Using sensing errors generated with a 
standard deviation of 1.0 nanometer and applied to both metrology and edge sensor measurements, the 
state estimate based wavefront control performance is shown in Fig. 14. The result shows the controlled 
wavefront RMS is slightly larger than the target wavefront (left image above), as expected. The difference 
wavefront map (right image above) more clearly reveals the effect of sensing errors, which shows the 
segment state estimation errors on the controlled wavefront errors, and the random distribution of sensor 
errors results in the random nature of the wavefront control error distribution. Note that the controlled 
wavefront error (right image in Fig. 14) is now 3.3 nm RMS versus the sensing error standard deviation 
of 1.0 nm. On average, the ratio of controlled wavefront error and the sensing error should be close to the 
wavefront error multiplier as indicated by equation (8); in our current simulation a hybrid sensing 
configuration with a WEM of 3.68 is used. In the next experiment, the sensing error is reduced to 100 
picometer, and the results from one random realization of sensing errors are shown in Fig. 15 

 

 

 

 

 
 

Figure 14: Closed-loop wavefront, 1.0 nm sensing errors 

 

 

 

 

 

 

Figure 15: Closed-loop wavefront, 100 pm sensing errors 

 

The controlled wavefront error (right image above) is reduced to 0.31 nm RMS, compared to 3.28 nm 
RMS when sensing error is 1 nm. The almost linear increase of controlled wavefront error with sensing 
error is expected since the sensing error is an additive noise in the measurement equation and the 
controlled wavefront error in our simulation results entirely from metrology and edge sensing errors. To 
enable exoplanet sciences, LUVOIR coronagraph instrument needs 10d-10 contrast and pico-meter level 
wavefront errors, which requires metrology and edge sensing accuracy at pico-meter level. Using 10 pico-
meter sensing errors, the wavefront control performance is shown in Fig. 16. 
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Figure 16: Closed-loop wavefront, 10 pm sensing errors 

 

Again, the post-control wavefront error is reduced by an order of magnitude to 29 pico-meter, as expected. 
The results shown above are from one realization of a random distribution of sensing errors with a 
particular standard deviation, and the initial segment pose errors are drawn from a random distribution 
but do not change with sensing errors to make it easier to compare the effects of sensing errors. To show 
the variation of open and closed-loop wavefront with random segment poses and sensing errors, a Monte 
Carlo simulation of 200 runs is performed, with sensing error standard deviation at 10 pm. The wavefront 
plots are shown in Fig. 17. 

Let 𝑑𝑊 be the difference between controlled wavefront and target wavefront, we can compute the average 
of the ratio of 𝑑𝑊and sensing errors in the Monte Carlo runs, which turns out to be 3.72. The hybrid 
sensing configuration we use for the simulations has a WEM of 3.68. The two values being close is also 
an experimental verification of equation (*).   

 

 

 

 
 

 
 

 

Figure 17: Open and closed-loop wavefront, 200 Monte Carlo runs, sensing error 10 pm 
 

The segment state and wavefront estimators have different sensitivity levels to segment out-of-
plane and in-plane motions; out-of-plane motions include segment tip, tilt and piston, and in-plane 
motions include segment clock and translations. The weaker sensitivity of wavefront to segment in-plane 
motions led us to investigate the possibility of measuring segment in-plane motions at a lower accuracy 
while maintaining high measurement accuracy for segment out-of-plane motions, and achieve comparable 
closed-loop wavefront performance to that of measuring both in-plane and out-of-plane segment motions 
with high accuracy. In the hybrid metrology and edge sensing for LUVOIR primary mirror segments, for 
example, high accuracy measurements are used for segment truss metrology and edge relative piston 
sensing, while low accuracy measurements are used for segment gap and shear sensing. We experimented 
several sensing error distributions to show the variations of closed-loop wavefront performance for 
isotropic sensing errors and anisotropic sensing errors, with results shown in Fig. 18. Again, 12 
metrology segments are used as before. From Fig. 18, when applying 10 pico-meter (pm) sensing errors 
to all metrology and edge-sensing measurements, the closed-loop wavefront is 29.65 pm after sensing and 
control (upper left image). When applying 100 pm sensing errors to all metrology and edge-sensing 
measurements, the closed-loop wavefront is 226.6 pm (upper right image), with a linear scaling as 
expected from our sensing error and control models. Next we increase the in-plane edge sensing 
measurement (gap and shear) error to 100 pm while keeping the metrology and edge relative piston 
measurement error at 10 pm, the closed-loop wavefront rises only modestly to 42.9 pm (lower left image) 
compared to the case of isotropic sensing error of 10 pm. When the in-plane motion measurement error 
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is further increased to 1000 pm and metrology and piston measurements still at 10 pm, the closed-loop 
wavefront is increased to 203.8 pm (lower right image). These results suggest that when in-plane 
measurement error is increased by one order of magnitude while keeping the same out-of-plane 
measurement error, the closed-loop wavefront deterioration is quite limited, but a further significant 
increase of in-plane measurement error would result in large closed-loop wavefront residuals. The results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Closed-loop wavefront with isotropic and anisotropic sensing errors 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Monte Carlo WFC simulations 10-100 nm sensor error distributions  

 

in Fig. 18 are from a snapshot of random sensing errors. Fig. 19 an Fig. 20 show the results from 200 
Monte Carlo runs with indicated sensing errors as standard variations used to generate random 
measurement errors. The mean of open-loop wavefront is 1.15 um due to primary segment rigid-body 
pose errors. The mean values of closed-loop wavefront in each case are consistent with the results and 
discussions we presented above with a single realization of sensing errors.  

 

 

Isotropic sensing error 
10 pm Isotropic sensing error 

100 pm 

Edge piston/metrology sensing error 
10 pm 

In-plane motion sensing error 
100 pm 

Edge piston/metrology sensing error 
10 pm 

In-plane motion sensing error 
1000 pm 

Open-loop: mean WF = 1.15 um 
Closed-loop 10 pm sensing: mean WF = 29.3 pm 
Closed-loop 100 pm sensing: mean WF = 295.7 pm 
Closed-loop 10 pm - 100 pm sensing: mean WF = 38.5 pm 
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Figure 20: Monte Carlo WFC simulations 10-1000 nm sensor error distributions 

 

6. Conclusion 
A LUVOIR primary segment truss metrology sensing model and an edge sensing model are presented, 

in reference to the LUVOIR Architecture Option A with a 15-meter primary of 120 segments. A hybrid 
segment motion sensing strategy is proposed that combines truss metrology and segment edge sensing, 
with metrology beams placed on a small set of segments and edge sensors on all segments. It is shown 
the hybrid sensing approach removes the non-observable global modes present in the 6DOF edge sensor 
model, generates small wavefront error multipliers for sensor errors, and enables a robust 6DOF segment 
state estimation and wavefront control.  

Numerical simulation results using the hybrid sensing approach, 6DOF segment state estimation and 
wavefront control are discussed. It is shown that with random segment initial rigid-body errors of several 
microns RMS, the 6DOF segment state estimation and subsequent control on the estimated wavefront 
can restore the LUVOIR system very close to its design wavefront when sensor errors are negligible. It 
is also shown, with Monte Carlo simulations, the closed-loop wavefront with sensor errors is on average 
the product of sensor architecture WEM and the mean of sensor errors, as can be theoretically established. 
Finally, it is shown from simulations that when the sensor accuracy measuring segment in-plane motions 
is an order of magnitude lower than that of measuring segment out-of-plane motions (including truss 
metrology), the degradation of closed-loop wavefront is quite limited  
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